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Abstract— Quantum cryptography or quantum key 

distribution uses quantum mechanics to guarantee secure 

communication. It enables two parties to produce a shared 

random bit string known only to them, which can be used as a 

key to encrypt and decrypt messages. An important and unique 

property of quantum cryptography is the ability of the two 

communicating users to detect the presence of any third party 

trying to gain knowledge of the key. A third party trying to 

eavesdrop on the key must in some way measure it, thus 

introducing detectable anomalies. By using quantum 

superposition or quantum entanglement and transmitting 

information in quantum states, a communication system can be 

implemented which detects eavesdropping. If the level of 

eavesdropping is below a certain threshold a key can be 

produced which is guaranteed as secure, otherwise no secure 

key is possible and communication is aborted. In this paper 

authors have realized Shor’s Quantum Factoring Algorithm 

using Matlab. Simulation results using quantum bits verify the 

possible eavesdropper’s presence, changing the state of the 

system and hence disrupting the whole process.         

Index Terms—Classical computing, quantum computing, 

quantum cryptography, photon, polarization, quantum key 

exchange, Shor’ algorithm.  

 

I. INTRODUCTION 

 UANTUM Computing is a new area of research that has 

only recently started to emerge. Quantum Computing 

and Quantum Cryptography were born out of the study of how 

quantum principles might be used in performing 

computations. In 1982 Richard Feynman, the Nobel Laureate 

observed that certain quantum mechanical phenomena could 

be simulated efficiently on a classical computer. He suggested 

that using quantum mechanics to do computations that are 

impossible on classical computers could perhaps reverse the 

simulation. Feynman did not present any examples of such 

devices, and only recently has there been progress in 

constructing even small versions. Quantum cryptography is 

 
 

used solely to produce and distribute a key and not to transmit 

any message data. This key can then be used with any chosen 

encryption algorithm to encrypt (and decrypt) a message, 

which can then be transmitted over a standard 

communication channel [1].  

The algorithm most commonly associated with quantum key 

distribution (QKD) for symmetric cryptosystems is the one-

time pad, as it is probably secure when used with a secret 

random key. This cryptosystem consists of creating a secret-

key of random bits the same length as the plaintext. The 

secret-key is then modularly added bit by bit to the plaintext 

to produce the ciphertext. The one-time pad however suffers 

three major draw-backs: the secret-key must be as long as the 

plaintext, the secret-key must be discarded after each use, and 

the secret-key must be truly randomly generated [2].  

Asymmetric cryptography schemes are based on the 

concept of one-way functions, which are mathematically non-

invertible functions. Encryption and decryption keys are 

different unlike symmetric cryptosystems, which use a single 

key for both encryption and decryption [3]. 

Symmetric quantum cryptosystems while having the 

potential for a perfectly secure system currently are plagued 

with a variety of technical problems as discussed above. 

Comparing this to an asymmetric cryptosystem (classical or 

quantum), at least three times as much information must be 

sent, and hence a decrease in the security of the system.  

Many current asymmetric cryptosystems depend upon 

classical intractable functions (such as the factoring of large 

integers with two prime factors in the case of RSA encryption 

[4]) that have been shown to be solvable in polynomial time 

on a quantum computer and hence are not quantum 

intractable. Because of this, quantum intractable functions 

must be found for quantum asymmetric cryptosystems to be 

secure. Currently very few quantum intractable functions 

have been proposed, and those that have are based upon a 

quantum algorithm proposed by Peter Shor of MIT [5] in 

1994 for the factorization of large integers with two coprimes.  

The organization of the paper is as follows. After the 

introduction in section I, an overview of quantum key 

exchange is provided in section II. This is followed by the 
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mathematical aspects (both classical and quantum) of Shor’s 

algorithm in section III. Section IV provides the simulation 

environment and results. The paper is concluded in section V 

with some highlights on future works. 

II. QUANTUM KEY EXCHANGE 

Quantum communication involves encoding information in 

quantum states, or qubits, as opposed to classical 

communications use of bits. Usually, photons are used for 

these quantum states. Quantum cryptography exploits certain 

properties of these quantum states to ensure its security. 

There are several different approaches to quantum key 

distribution, but they can be divided into two main categories 

depending on which property they exploit [2]. 

A. Prepare and Measure Protocols  

Unlike in classical physics, the act of measurement is an 

integral part of quantum mechanics. In general, measuring an 

unknown quantum state will change that state in some way. 

This is known as quantum indeterminacy, and underlies 

results such as the Heisenberg Uncertainty Principle, 

Information-Disturbance Theorem and No Cloning Theorem 

[6]. This can be exploited in order to detect any 

eavesdropping on communication (which necessarily will 

involve measurement), and more importantly calculate the 

amount of information which has been intercepted [7]. 

B. Entanglement Based Protocols  

The quantum states of two (or more) separate objects can 

become linked together in such a way that they must be 

described by a combined quantum state, not as individual 

objects. This is known as Entanglement and means, for 

example, performing a measurement on one object will affect 

the other. If an entangled pair of objects is shared between 

two parties, anyone intercepting either particle will alter the 

overall system, allowing their presence (and the amount of 

information they have gained) to be determined [7].  

These two approaches can both be further subdivided into 

three families of protocols; discrete variable, continuous 

variable and distributed phase reference coding. Discrete 

variable protocols were the first to be invented, and they 

remain the most widely implemented. The other two families 

are mainly concerned with overcoming practical limitations 

of experiments. Described below are the two protocols that 

use discrete variable coding. 

C. Photon Polarization States  

Any two pairs of conjugate states can be used for the 

protocol, and many optical fibre based implementations use 

phase encoded states. The sender (traditionally referred to as 

Alice) and the receiver (Bob) are connected by a quantum 

communication channel which allows quantum states to be 

transmitted. In the case of photons this channel is generally 

either an optical fibre or simply free space. In addition they 

communicate via a public classical channel, for example 

using radio waves or the internet. Neither of these channels 

need to be secure; the protocol is designed with the 

assumption that an eavesdropper (referred to as Eve) can 

interfere in any way with both. The security of the protocol 

comes from encoding the information in non-orthogonal 

states. Quantum indeterminacy means that these states cannot 

in general be measured without disturbing the original state 

(see No cloning theorem) [6]. There are two pairs of states, 

with each pair conjugate to the other pair, and the two states 

within a pair orthogonal to each other. Pairs of orthogonal 

states are referred to as a basis. The usual polarization state 

pairs used are either the rectilinear basis of vertical (0°) and 

horizontal (90°), the diagonal basis of 45° and 135° or the 

circular basis of left- and right-handedness. Any two of these 

bases are conjugate to each other, and so any two can be used 

in the protocol. Fig. 1 shows the rectilinear and diagonal 

bases that are used. 

 

 

 

 

 

        

 
Fig. 1.  Rectilinear and diagonal bases 

 

The first step is quantum transmission. Alice creates a 

random bit (0 or 1) and then randomly selects one of her two 

bases (rectilinear or diagonal in this case) to transmit it in. 

She then prepares a photon polarization state depending both 

on the bit value and basis, as shown in the table to the left. So 

for example a 0 is encoded in the rectilinear basis (+) as a 

vertical polarization state, and a 1 is encoded in the diagonal 

basis (x) as a 135° state. Alice then transmits a single photon 

in the state specified to Bob, using the quantum channel. This 

process is then repeated from the random bit stage, with Alice 

recording the state, basis and time of each photon sent. 

 Quantum mechanics (particularly quantum indeterminacy) 

says there is no possible measurement that will distinguish 

between the 4 different polarization states, as they are not all 

orthogonal. The only measurement possible is between any 

two orthogonal states (a basis), so for example measuring in 

the rectilinear basis will give a result of horizontal or vertical. 

If the photon was created as horizontal or vertical (as a 

rectilinear eigenstate) then this will measure the correct state, 

but if it was created as 45° or 135° (diagonal eigenstates) then 

the rectilinear measurement will instead return either 

horizontal or vertical at random. Furthermore, after this 

measurement the photon will be polarized in the state it was 

measured in (horizontal or vertical), with all information 

about its initial polarization lost [8]. 

Basis 0 1 
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 As Bob does not know the basis the photons were encoded 

in, all he can do is select a basis at random to measure in, 

either rectilinear or diagonal. He does this for each photon he 

receives, recording the time, measurement basis used and 

measurement result. After Bob has measured all the photons, 

he communicates with Alice over the public classical channel. 

Alice broadcasts the basis each photon was sent in, and Bob 

the basis each was measured in. They both discard photon 

measurements (bits) where Bob used a different basis, which 

will be half on average, leaving half the bits as a shared key 

as shown in Table I. 

 
TABLE I 

PHOTON POLARIZATION STATES PROTOCOL 

 

Alice's random bit 0 1 1 0 1 0 0 1 

Alice's random sending basis   X  X X X  

Photon polarization Alice 

sends         

Bob's random measuring basis  X X X  X   

Photon polarization Bob 

measures         

Shared secret key 0  1   0  1 

 

D. Intercept and Resend 

To check for the presence of eavesdropping Alice and Bob 

now compare a certain subset of their remaining bit strings. If 

a third party has gained any information about the photons 

polarization it will have introduced errors in Bobs 

measurements. If more than p bits differ they abort the key 

and try again, possibly with a different quantum channel, as 

the security of the key cannot be guaranteed. p is chosen so 

that if the number of bits known to Eve is less than this, 

privacy amplification can be used to reduce Eve's knowledge 

of the key to an arbitrarily small amount, by reducing the 

length of the key. 

The simplest type of possible attack is the intercept-resend 

attack, where Eve measures the quantum states (photons) sent 

by Alice and then sends replacement states to Bob prepared in 

the state she measures [9]. This will produce errors in the key 

shared between Alice and Bob. As Eve has no knowledge of 

the basis a state sent by Alice is encoded in, she can only 

guess which basis to measure in, in the same way as Bob. If 

she chooses correctly then she will measure the correct 

photon polarization state as sent by Alice, and will resend the 

correct state to Bob. However if she chooses incorrectly then 

the state she measures will be random, and the state sent to 

Bob will not be the same as the state sent by Alice. If Bob 

then measures this state in the same basis Alice sent he will 

get a random result, as Eve has sent him a state in the 

opposite basis, instead of the correct result he would get 

without the presence of Eve as shown in Table 2.  

 
TABLE II 

INTERCEPT AND RESEND PROTOCOL 

 

Alice's random bit 0 1 1 0 1 0 0 1 

Alice's random sending basis   X  X X X  

Photon polarization Alice 

sends         

Eve's random measuring 

basis  X   X  X  

Polarization Eve measures 

and sends         

Bob's random measuring 

basis  X X X  X   

Photon polarization Bob 

measures         

Shared secret key 0  0   0  1 

Errors in key ✓   ✘    ✓   ✓  

III. SHOR’S ALGORITHM 

A. Overview 

Shor's algorithm, named after mathematician Peter Shor, is a 

quantum algorithm (an algorithm which runs on a quantum 

computer) for integer factorization discovered in 1994 [5]. 

Informally it solves the following problem: Given an integer 

n, the algorithm finds the prime factors of n.  

The algorithm was viewed as important because of the 

difficulty of factoring large numbers, which is used in most 
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cryptography systems like RSA [4]. If an efficient method of 

factoring large numbers is implemented most of the current 

encryption schemes would become worthless. While it has not 

been proven that factoring large numbers can not be achieved 

on a classical computer in polynomial time, the fastest 

algorithm publicly available for factoring a large number n 

(whose representation has log n bits) runs in: 

O(exp((log n)1/3 * (log log n)2/3)), or exponential time. In 

contrast Shor's algorithm runs in O((log n)2 * (log log n) on a 

quantum computer, and then must perform O(log n) steps of 

post processing on a classical computer. Overall then this 

time is polynomial. This discovery propelled the study of 

quantum computing forward and as such an algorithm is 

much sought after. The effectiveness of the algorithm lies in 

the efficiency of the quantum Fourier transform, and modular 

exponentiation by squaring. 

Shor's algorithm is important because it can, using a 

quantum computer, be used to break the widely used public-

key cryptography scheme known as RSA. RSA is based on 

the assumption that factoring large numbers is 

computationally infeasible. So far as is known, this 

assumption is valid for classical (non-quantum) computers; 

no classical algorithm is known that can factor in polynomial 

time. However, Shor's algorithm shows that factoring is 

efficient on a quantum computer, so an appropriately large 

quantum computer can break RSA. It was also a powerful 

motivator for the design and construction of quantum 

computers and for the study of new quantum computer 

algorithms. It has also facilitated research on new 

cryptosystems that are secure from quantum computers, 

collectively called post-quantum cryptography [10]. 

B. Procedure 

The problem to be solved is: given a composite number n, 

find an integer p, strictly between 1 and n that divides n. 

Shor's algorithm consists of two parts: 

• A reduction, which can be done on a classical computer, 

of the factoring problem to the problem of order-finding. 

• A quantum algorithm to solve the order-finding problem. 

 

Classical Part 

1. Pick a pseudo-random number a<N. 

2. Compute gcd(a, N). This may be done using the 

Euclidean algorithm. 

3. If gcd(a, N) ≠ 1, then there is a nontrivial factor of N. 

Stop. 

4. Otherwise, use the period-finding subroutine (below) to 

find r, the period of the following function:  

 f(x) = a
x
 mod N, 

        i.e. the smallest integer r for which f(x + r) = f(x).  

5. If r is odd, go back to step 1. 

6. If ar/2
 ≡ -1 (mod N), go back to step 1. 

7. The factors of N are gcd(a
r/2

 ± 1, N). Stop. 

 

 

 

Quantum Part 

1. Start with a pair of input and output qubit registers with 

log2 N qubits each, and initialize them to  

       
        where x runs from 0 to N - 1. 

2. Construct f(x) as a quantum function and apply it to the 

above state, to obtain  

       
3. Apply the quantum Fourier transform on the input 

register. The quantum Fourier transform on N points is 

defined by:  

       
This leaves us in the following state:  

      
4. Perform a measurement. We obtain some outcome y in 

the input register and f(x0) in the output register. Since f 

is periodic, the probability to measure some y is given by 

 

 
Analysis now shows that this probability is higher, the   

closer yr/N is to an integer.  

5. Turn y/N into an irreducible fraction, and extract the 

denominator r’, which is a candidate for r. 

6. f(x) = f(x + r’). Stop. 

IV. SIMULATION ENVIRONMENT AND RESULTS 

A. Simulation Environment 

Although experimental demonstration of Shor’s algorithm is 

important for the study of quantum computers, however it has 

proved to be elusive [11]. In this paper we present a 

realization of the simplest instance of Shor's algorithm using 

Matlab Version: 7.5.0.342(R2007b). There are four 

restrictions for Shor’s algorithm. They are: 

1. The number to be factored must be >= 15 

2. The number to be factored must be odd 

3. The number must not be prime 

4. The number must not be a prime power 

B. Results 

The results of Matlab simulation of Shor’s algorithm is 

presented below. Fig. 2 shows the simulation results of 

classical part of the algorithm when all the above conditions 

are met for N = 63. Fig. 3 shows the simulation results of 

quantum part of the algorithm. Fig. 3a, 3b, 3c, 3d and 3e 

show the plots of steps 1, 2, 3, 4 and situation when the 

information is intercepted by eavesdropper and no outcome is 

obtained (encircled in Fig. 3e) respectively. 
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Fig. 2.  Simulation results of classical part of Shor’s algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3a.  Input and output qubit register initialization  
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Fig. 3b.  Absolute value of Quantum Function  of qubits 
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Fig. 3c.  Absolute value of Quantum Fourier Transform of qubits 
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Fig. 3d.  Output measurement  
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Fig. 3e.  Information getting intercepted 

 

Fig. 3.  Simulation results of quantum part of Shor’s algorithm 

V. CONCLUSION 

Quantum Computing is a new area of research that has very 

recently emerged. As explained Shor’s quantum factoring 

algorithm is no doubt a very efficient way of factorizing a 

composite number and has a lot of advantages over classical 

approach with regard to time of calculation. However it is not 

devoid of limitations. The computers that we use are not 

enough to do huge quantum computations. We may not be 

able to implement this algorithm in case of large numbers. 

The processor strength should be much more than the 

classical computers we generally use. 

The future prospect of quantum cryptography is huge. 

Taking into account the massive use of internet in the modern 

days, it is going to play a mammoth part in securing the 
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transfer of information over a network. This is only a new 

field of research and we are yet to see many more innovations 

coming our way in this area. There have been many 

modifications to Shor's algorithm. For example, whereas, an 

order of twenty to thirty runs are required on a quantum 

computer in the case of Shor's original algorithm, and with 

some of the other modifications, in the case of the 

modification done by David McAnally at the University of 

Queensland an order of only four to eight runs on the 

quantum computer is required [12]. Though this will need 

larger resources, strong processors, much more memory than 

the classical computers, still we can surely say that it is not 

impossible. We are about to witness a huge revolution in the 

field of network security. 
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